Impressive Cryo-EM Achievements

Namba Lab, Osaka
Map Resolution

- Biggest growth is in the 3-4Å range
- Substantial number of maps in 4-5Å range

* Not all maps have an associated model
Many challenges:
- How to interpret “featureless” maps (pattern matching, chemical constraints)
- How to optimize models with sparse data (prior information)
Crystallographic vs. Cryo-EM Maps

Beta galactosidase at 2.2 Å
Crystallographic vs. Cryo-EM Maps

Beta galactosidase at 2.2 Å

X-ray (PDB 3i3b) Cryo-EM (PDB 5a1a)
Crystallographic vs. Cryo-EM Maps

- The maps are very similar
More Accurate Low Resolution Information in Cryo-EM Maps

Blurring makes it worse

Blurring makes it better

Tom Terwilliger, Los Alamos National Lab
The Phenix Project

Lawrence Berkeley Laboratory
Paul Adams, Pavel Afonine, Dorothee Liebschner, Nigel Moriarty, Billy Poon, Oleg Sobolev

Los Alamos National Laboratory
New Mexico Consortium
Baylor College of Medicine
Tom Terwilliger, Li-Wei Hung, Matt Baker

Baylor College of Medicine

University of Cambridge
Randy Read, Airlie McCoy, Tristan Croll, Rob Oeffner, Kaushik Hatti, Massimo Sammito, Duncan Stockwell

Duke University
Jane & David Richardson, Chris Williams, Vincent Chen, Bradley Hintze

An NIH/NIGMS funded Program Project

Structural Biology Workflows

X-ray/neutron crystallography

- How good are the experimental data?
 - Data quality assessment
 - Experimental phasing
 - Density modification
 - Molecular replacement
 - Automatic model building
 - Refinement/validation
 - Ligand/custom restraints
 - Deposition

Cryo-EM

- Data quality assessment
 - Map optimization
 - Automatic model building
 - Refinement/validation
 - Fitting
 - Deposition

Dorothee Liebschner, Lawrence Berkeley Lab
New Tools for Cryo-EM in Phenix

- Symmetry from a map
- Automated map sharpening
- Rigid model docking
- Automated model building
- Real space refinement
- Model and map validation
Tutorials

- Model placement and building
 - Symmetry determination
 - Rigid body model fitting
 - Map sharpening
 - Map segmentation
 - Automated model building
 - [Focused map/model combination]
- Atomic model optimization and validation
 - Structure refinement
 - Validation
Tutorial Format

- Use graphical user interface
Tutorial Format

- Use tutorial datasets distributed with Phenix
- Should run on most laptops (2GB RAM, multiple CPUs better)
Challenges

• Automated model building
 • What is the magnification of the map? (can be 5% uncertainty)
 • What is the optimal sharpening of the map?
 • What is the region containing the molecule?
 • Low and variable resolution across maps

• Structure optimization
 • Variable resolution across maps
 • Large molecules
 • Poor initial models

• Validation
 • How to validate a model against moderate resolution maps
Automated Model Docking

Tom Terwilliger
Los Alamos National Laboratory

Pavel Afonine, Oleg Sobolev
Lawrence Berkeley National Laboratory
Automated Model Docking

- Systematic cross correlation search of rotations and translations
- Performed in reciprocal space using FFT (very fast)
- Rigid body optimization of position

EMD8750

1SS8 chain A
Automated Model Sharpening, Segmentation and Model Building

Tom Terwilliger
Los Alamos National Laboratory

Pavel Afonine, Oleg Sobolev
Lawrence Berkeley National Laboratory
Automated Model Building Procedure

- Determine optimal sharpening of the map
- Cut out asymmetric unit of the map
- Trace chain and build model
- Idealize secondary structure and refine
- Assemble and refine (protein/RNA/DNA)
- Apply molecular symmetry and re-refine

Cryo-EM map from the yeast mitochondrial ribosome (chain I of large subunit, 3.2Å, Amunts et al., 2014)

Automated Map Sharpening

Create series of maps with variable overall B-values

Set contour level enclosing 20% of molecular volume

Calculate surface area of contours

Count number of distinct regions enclosed by contours

Choose map with maximum of adjusted surface area

adjusted area = surface area – weight * number of regions

phenix.auto_sharpen
Automated Map Sharpening

Deposited Map
High-conductance Ca(2+)-activated K(+) channel (emd_8414 and PDB entry 5tji; Hite et al., 2017)

Autosharpened Map

$B_{iso} = 260\text{Å}^2$

$B_{iso} = 20\text{Å}^2$
Automated Map Sharpening

Deposited Map

Cystic fibrosis transmembrane conductance regulator
(emd_8461 and PDB entry 5uar; Zhang and Chen, 2016)

Autosharpened Map

$B_{iso} = 290\text{Å}^2$

$B_{iso} = -60\text{Å}^2$
Automated Map Sharpening

Terwilliger et al. Automated map sharpening by maximization of detail and connectivity. *Acta Cryst* 2018, **D74**:545-559
Automated Segmentation

- Use the symmetry of the map
- Identify contiguous regions representing asymmetric unit of the map
- Choose symmetry-copies that make compact molecule

emdl_6224 (anthrax toxin protective antigen pore at 2.9 Å; Jiang et al. 2015)
Chain Tracing

- Determine optimal sharpening of the map
- Cut out asymmetric unit of the map
- Trace chain and build model
- Idealize secondary structure and refine
- Assemble and refine (protein/RNA/DNA)
- Apply molecular symmetry and re-refine

- Variable map thresholding
- Trace protein main chain
- Identify direction of main chain by fit to density
Idealization and Refinement

- Refine and rebuild model (simulated annealing, rebuilding and combination of best parts of each model)
- Replace segments with idealized structure
- Identify hydrogen-bonding (β-sheets, α-helices) and use them as restraints in real-space refinement

Chain I, yeast mitochondrial ribosome large subunit, 3.2 Å, 3j6b
Assembly and Polymer Recognition

- Determine optimal sharpening of the map
- Cut out asymmetric unit of the map
- Trace chain and build model
- Idealize secondary structure and refine
- Assemble and refine (protein/RNA/DNA)
- Apply molecular symmetry and re-refine

- Try building protein/RNA/DNA (whatever may be there)
- Choose segment type by map correlation

70S ribosome at 2.9 Å
The Final Model

- Determine optimal sharpening of the map
- Cut out asymmetric unit of the map
- Trace chain and build model
- Idealize secondary structure and refine
- Assemble and refine (protein/RNA/DNA)
- Apply molecular symmetry and re-refine

- `phenix.map_to_model`

30S Ribosome (1j5e, 2.9 Å)
Automated Building - Sharpening

Original

Automatically Sharpened
Automated Building - Combining Multiple Models

Three Independently Built Models

Composite Model
Building at Low Resolution

Gamma-secretase at 4.5 Å (autobuilt model; emd_2677)

Gamma-secretase structure at 3.4 Å (autobuilt model; emd_3061)
Building at Medium/High Resolution

Proteasome at 2.8 Å (autobuilt model; emd_6287)
Beta-galactosidase at 2.2 Å (autobuilt model; emd_2984)
Autobuilding Performance
Model Building Version 2

1. Trace chain the way a person does
2. Find secondary structure
3. Find clear regions of density
4. Adjust contour level until a region just connects to another
5. Iterate to build up a connected chain
Model Building Version 2
Finding C_α and C_β positions

- Trace chain path through high density
- Find C_β positions from side-chain density
- Choose C_α positions 3.8 Å apart and next to C_β positions
- Construct all-atom model with Pulchra* and refine

Sequence Assignment

• Determine probability of side chain at each C_{α}
• Align sequence to maximize total probability for the chain

Residue	G	A	S	V	I	L	M	C	F	Y	K	R	W	H	E	D	Q	N	P	T
CC	0.30	0.50	0.53	0.47	0.58	0.62	0.68	0.59	0.83	0.77	0.71	0.69	0.70	0.82	0.65	0.64	0.60	0.60	0.35	0.47
Prob	3	0	0	0	0	0	1	0	40	23	5	5	4	9	2	2	1	0	2	0

Phenix
Improved Connectivity

3j9e (EMD 6240)
3.3 Å

Average chain length = 84
Improved Performance

![Graph showing improved performance between V1 and V2](image-url)
What’s The Molecule?

• Use the highest side chain probabilities to determine a sequence (from the map)
• Search the sequence database to identify the molecule

With Xiaorun Li, Chi-min Ho & Hong Zhou, UCLA
Conclusions

• Automated model building is possible, but can be improved
 • Include information from secondary structure prediction, evolution etc.
 • Combine structure-modeling tools (Rosetta) with Phenix model-building

• Many challenges remain:
 • Reliably accounting for uncertainty in magnification
 • Local variation in resolution leads to uncertainties in interpretation
Acknowledgements

Berkeley Laboratory
Pavel Afonine, Youval Dar, Nat Echols, Jeff Headd, Richard Gildea, Ralf Grosse-Kunstleve, Dorothee Liebschner, Nigel Moriarty, Nader Morshed, Billy Poon, Ian Rees, Nicholas Sauter, Oleg Sobolev, Peter Zwart

Los Alamos Laboratory/New Mexico Consortium
Tom Terwilliger, Li-Wei Hung

Baylor College of Medicine
Matt Baker

Cambridge University
Randy Read, Airlie McCoy, Gabor Bunckozi, Tristan Croll, Rob Oeffner, Kaushik Hatti, Massimo Sammito, Duncan Stockwell, Laurent Storoni

Duke University
Jane Richardson & David Richardson, Ian Davis, Vincent Chen, Jeff Headd, Chris Williams, Bryan Arendall, Bradley Hintze, Laura Murray

UC San Francisco
Ben Barad, Yifan Cheng, Jaime Fraser

University of Washington
Frank DiMaio, Ray Wang, David Baker

Oak Ridge National Laboratory
Marat Mustyakimov, Paul Langan

Other Collaborators
Corey Hryc, Zhao Wang, Wah Chiu, Pawel Janowski, David Case, Dale Tronrud, Donnie Berholz, Andy Karplus, Alexandre Urzhumtsev & Vladimir Lunin, Garib Murshudov & Alexi Vagin, Paul Emsley, Bernhard Lohkamp, Kevin Cowtan, David Abrahams, PHENIX Testers & Users

Funding
- NIH/NIGMS: P01GM063210, P50GM062412, P01GM064692, R01GM071939
- PHENIX Industrial Consortium
- Lawrence Berkeley Laboratory